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Stereoselective iodine-induced cyclisation of alkene acetals.
Application to the synthesis of 3-deoxy-exo-glycals and substituted

tetrahydrofurans
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Abstract—2,5-Substituted tetrahydrofurans have been stereoselectively prepared by a iodine-induced cyclisation of alkene acetals,
and the iodo derivatives obtained were transformed into 3-deoxy-exo-glycals and in polyhydroxy substituted tetrahydrofurans.
� 2004 Elsevier Ltd. All rights reserved.
exo-Glycals1 have not been studied as much as the
corresponding endo-glycals, which are valuable inter-
mediates in synthesis.2;3 However, enol ether function of
exo-glycals1;4 also allows many interesting transforma-
tions, specially those directed to the synthesis of C-gly-
cosides and C-disaccharides.5 exo-Glycals have been
obtained by reacting a sugar lactone with the Tebbe
reagent6 (Scheme 1, path a), by Wittig type olefination
O
O

O

X

O R

R

O

CHO

R=H, R'=CO2Me
path b

path a
R=R'=H

Cp2TiMe2
(Tebbe reagent)

Ar-M
R=Ar, R'=

path f

path g

Elimination
R=R'=H

Ph3P=CHCOOMe

X= I, Se(O)Ph, Ms

Scheme 1.

Keywords: Stereoselectivity; Cyclisation; exo-Glycals; Tetrahydrofurans.

* Corresponding authors. Tel.: +34-977559556; fax: +34-977559563; e-mail a

0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.tetlet.2004.03.091
of glycosylphosphonium salts7 or sugar lactones8 (path
b), by a Ramberg–B€acklund rearrangement of S-glyco-
sides9 (path c), by reacting 1-methyl endo-glycals with
bromine and elimination (path d),10 by reductive elimi-
nation of bromoketoses in Fisher–Zanch conditions11

(path e), by nucleophilic addition to sugar lactones12

or C-formylglycosides and elimination13 (path f) and
by halogens,14 sulfonate groups15 or selenoxide
'

O Br

OBz

O

SO2CHRR'

Ramberg-Bäcklund
rearrangement
R=R'=H

path c

path e

H

Zn/HOAc
Fischer-Zanch
R=R'=H

Opath d

Br2, base
R=R'=H

ddresses: matheu@quimica.urv.es; castillon@quimica.urv.es

mail to: matheu@quimica.urv.es;


3

7

a

a

13 R=H
14 R=Bz

O
RO OBn

I

10 R=H
11 R=Bz

O
RO

OBn I

O
RO OR

O
RO

RO

12

15

c

c

b

b

Scheme 3. Reagents and conditions: (a) Ag(sym-coll)2ClO4, I2,

CH3CN, H2O, rt, 1 h (10: 63%, 13: 64%); (b) BzCl, Py, DMAP, rt, 2 h,

100%; (c) tBuOK, CH2Cl2, 1–6 h (12: 43%, 15: 100%).
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eliminations16 (path g). Recently, we reported the
preparation of 3,4-dideoxy-exo-glycals as intermediates
in the synthesis of C01-fluoromethyl-ddI.17

However, 3-deoxy-glycals have been studied consider-
ably less, and there are only a few reports, which
describe their synthesis based on the Wittig reaction
starting from the glycosylphosphonium salts of 2-deoxy-
carbohydrates.18

In this paper we report a short and stereoselective pro-
cedure for synthesising substituted tetrahydrofurans and
3-deoxy-furanoid glycals of erythro and threo configu-
ration, based on a stereoselective iodine-induced cycli-
sation of alkene acetals.

As it was mentioned before exo-glycals can be synthes-
ised by an elimination reaction from iodomethyl-tetra-
hydrofuran derivatives, which in turn are commonly
synthesised from pentoses by a Wittig olefination and
subsequent iodine-induced cyclisation.19 The stereo-
selectivity of this cyclisation is controlled by the allylic
substituent,20 but mixtures of diasteromers are usually
obtained in their absence.

Stereoselective synthesis of alkenols 2 and 6 from gly-
ceraldehyde (1) by using appropriate chiral allylborane
reagents21 and titanium reagents22 has been reported
(Scheme 2). Free hydroxyl groups of compounds 2 and 6
were protected by reaction with BnBr to give the benzyl
ether derivatives 3 and 7, respectively, in good yields.

Initially, we deprotected the acetal group in compounds
3 and 7, to give the alkenediols 4 and 8, which were
submitted to the iodine-induced cyclisation under
kinetic control (Scheme 2). Labelle et al.23 reported that
electronegative homoallylic groups can control the ste-
reoselectivity of the reaction. The resulting product has
this group and the iodomethyl chain in a trans relative
disposition. Cyclisation of 4 and 8 proceeded with good
yields to give the iododerivatives 5 and 9, respectively,
but diastereoselectivities were very low. The relative
stereochemistry of the resulting diastereomers was
determined after carrying out NOE experiments.
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Scheme 2. Reagents and conditions: (a) Ref. 21. (b) NaH, BnBr, THF, 0 �C–
CH3CN, 0 �C, 15min, (5: 86%, 9: 90%).
In order to obtain tetrahdyrofuran derivatives with a
defined stereochemistry, we focused in the Dabideen and
Mootoo work24 about the cyclisation of cyclic alkene-
acetals induced by (I(sym-coll)2ClO4).

25 Thus, com-
pounds 3 and 7 were treated with (I(sym-coll)2ClO4) in a
mixture of CH3CN and H2O (Scheme 3) to give the
tetrahydrofuran derivatives 10 and 1326;27 in a complete
stereoselective way. Reaction of 10 and 13 with BzCl
afforded compounds 11 and 14, respectively, in quanti-
tative yields.

exo-Glycals were obtained by treating 11 and 14,
respectively, under basic conditions14 (Scheme 3). The
elimination was attempted with AgF and DBU, but the
results where best with t-BuOK. In this case the starting
material reacted to give the exo-cyclic glycals 12 and
15,28 of threo and erythro configuration, respectively, in
good yields. The exo-glycals proved to be stable enough
to be characterised by NMR techniques but slowly
isomerised to endo-glycals when they were left to stand,
particularly compound 12. This was proved by the
progressive appearance in the 1H NMR spectra of a
methyl group attached to position 1 of an endo-glycal.
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rt, 16 h, 85%; (c) DOWEX/Hþ, MeOH, rt, 6 h, 100%; (d) I2, NaHCO3,



O
BzO OBn

OpNO2Bz

O
R1O OR2

OR3

16

14

17 R1=R3=H, R2=Bn
18 R1=Bz, R2=H, R3=pNO2Bz

a b

Scheme 4. Reagents and conditions: (a) KOCOPhpNO2, 18-crown-6,

DMSO, 90 �C, 2 h, 64%; (b) EtOAc, NaBrO3, Na2S2O4, H2O, rt, 3 h,

62% (18).
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Tetrahydrofuran rings are present in a broad spectrum
of biological molecules.29 Then, we considered the
selective conversion of iodine derivative 14 in a differ-
ently protected polyhydroxylic derivative. For that, 14
was treated with KOCOPhpNO2 in dimethylsufoxide to
obtain compound 16 in 64% yield. Hydrolysis of com-
pound 16 to give 17 is a straightforward process.
However, when deprotection of benzyl group in 16
under hydrogenolytic conditions was tried, reduction of
nitro group was exclusively produced. Finally, 18 could
be obtained by using NaBrO3/Na2S2O4 (Scheme 4).30

In conclusion, we have developed a stereoselective pro-
tocol for the synthesis of 2,4,5-trisubstituted tetra-
hydrofurans, and of 3-deoxy-furanoid-exo-glycals,
based on a iodine-induced stereoselective cyclisation of
alkene acetals.
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